THEORY OF SHORT WAVES IN GAS DYNAMICS

G. P. Soldatov UDC 534.222.2

An examination is made of the two-dimensional, almost stationary flow of an ideal gas with
small but clear variations in its parameters. Such gas motion is described by a system of
two quasilinear equations of mixed type for the radial and tangential velocity components [1,
2]. Partial solutions [3, 4], characterizing the variation in the gas parameters in the viecinity
of the shock wave front (in the short-wave region), are known for this system of equations.
The motion of the initial discontinuity of the short waves derived from the velocity compo-
nents with respect to polar angle and their damping are studied in the report. A solution of
the equations characterizing the arrangement of the initial discontinuity derived from the
velocities is presented for one particular case of the class of exact solutions of the twoparam-
eter type [4]. Functions are obtained which express the nature of the variation in velocity
of the front of the damped wave and its curvature.

‘1. Formulation of the Problem. Let us write the equation of the short waves for two-dimensional,
almost stationary streams of ideal gas [1] in the form

Us+ AU, + B =10

U=[”], A:[ 0 ‘/2(1»—5)], Bz[ku/(u—ﬁ)] (1.1)
v —1 0 0

Here k = 1 for motions having axial symmetry in the spherical coordinate system r, 0; k=1/2 for
plane parallel motions in the polar coordinate system r, 6; the dimensionless functions p, v, §, and y are
connected with the radial and tangential velocity components u and v and the independent variables by the
equations

u = agMyp, v = agM, [¥s (y4+ 1) Mo]"”'\}
r=atll + Yy (y + 1) My8l, 8 = [V (v 1) Mol'y

Let us examine the region in which the proper values Als? = +1/vV2(5 —p) of the matrix A are real
while the corresponding left-handed characteristic vectors I12=[1 A ?] are linearly independent. Sup-
pose the column vector U (5, y) has a discontinuity in the first derivatives with respect to the variable y
at some initial value & = §, when y=y, in the above-indicated region where system (1.1) is hyperbolic.

The initial discontinuities of the derivatives move along the characteristic curves
dy/ds = 4 {2 (0 —p)l-*"

of system (1.1). The law of motion of the initial weak discontinuity must be established, i.e., the nature
of the dependence on the variable § must be determined.

2. Equations for the Discontinuities. Jeffrey and Taniuti [5] studied in general form the problem of
the distribution of the initial discontinuity in the derivatives for quasilinear hyperbolic systems.

Following [5], let us introduce the new independent variables

¢ (8, y) = const, & — const
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setting
51:67 (PE_i_}"l(Py:O

Then the wave front is described by the equation ¢ (8, y) =0, and the matrix equation (1.1) is repre-
sented in the form

M 2y U+ (W2 — M) Up+y. B} = 0 2.1

Let [E] designate the discontinuity E ¢= o-"E @ =0t in the quantity E. Then

U} =0, [Ual =0
[Upl =T (8Y) =+ 0, [yl = ¥ (89 =0

Examining Eq. {2.1) to the right and left of the wave front, we obtain equations relating the unknown
column vector

M ]
@Y = [N] and the scalar Y (8Y)

‘ Iy dl — 12UY =0 2.2)
M 4 [(Vol)eIll]* Ugs: + [V (BB, I = 0
Y = (Vi A1

Here a prime designates a derivative with respect to 81, an asterisk designates a transposition
operation, the zero index designates the value in front of the wave front, and Vy; designates the gradient

operator in U space.

We substitute into Eq. (2.2) the proper values and propei' vectors of the matrix A and the expressions
for the column vectors U, II, and B and obtain equations for the motion of the discontinuities M, N, and Y

M= [2(8 — Y’ (2.3)
N=I,+V20 —p)u,]Y —I2( —piY’ 2.4)

22 (6 — WY — {v, + V26 —p) py —
—a[2(6—p)2(8 —w) + V2@ —w)vs +4k8} Y —
—v, + V2@ =@ x p, Y =0 {2.5)

The null indices and the unit on the variable 6 are dropped from Egs. (2.3)-(2.5).

3. Solution of Equations for the Discontinuities. For application it is important o solve the short-
wave equations in symmetrical form. Let us use one case of the two-parameter class of exact solutions
{41 of the system (1.1)

p=t v =ay 8=x( @.1)
x(&):{ cEHalr+2Eta)—a at k=%,
—e/2—~E+¢/2lneE+e/2) at k=1
In this case Eq. (2.5) reduces to a first-order equation for the function Z =Y*
_ T—2k . oy +4RE c1 + 4kE k
o Zet + 152 (200 — 9)) + e = \ o= + 50 & (3.2)
with the solution
Z = ¢ [1 + On]—Oteenn’  qeo—d4 exp (¢, / 4m) (3.3)
at k=1/2 and
Z = [ccp2]™ 8 —El™smexp {—ee, /B8P (1,1, 1 + lnny)} 3.4)
at k=1,

Here and later ¥ (a, b, x) is a degeunerate hypergeometric function related to the incomplete gamma
function [6]
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T, 2)={ 't ar
e, o)=z2e*¥ (1, 1+ a,2)=e*F{1 —a,1—a
where ¢, is a constant of integration

{ Eten at k=3,
T VeE+e/2) at k=1

The solutions of Egs. (3.2) and (3.3) and of (3.2) and (3.4)

_ §— g (e IE g 3—c1 a—38)
Y_2cz[ = ] ¢ ‘P‘(i,-—r o, ak=d )+c3
Y = (a2 {6 — g exp{— g2 € (1, 1,1 + )} dE + o,

represent the laws of motion of the discontinuity Y for k=1/2 and 1.
In the latter case for uniform gas motions c; =0,and the solution takes the form
Y =[e28 (6 =8 {8 —8) W (1, ", 8 —B)/4E) —4E} + ¢

The laws of motion of the discontinuities in the derivatives with respect to velocity are obtained from
(2.8) and (2.4):
M=20 —8I*Z N=q¢Y —[2(0 —8)l*Z

into which it is necessary to insert the corresponding values of 6, Y, and Z for k=1/2 and 1.

4. Damping of Short Waves. Let us change to the variables 6! and 7 in the equations (1.1) according
to the equations

9@ 1 4 d a

% 8y ot oy ot
and let us represent the unknown velocities u and v in the vicinity of 7 =0 in the form of expaunsions by

powers of T:

b= T () + s (8) F .o wn
v = vy + ™, (8) + vy () + ... .

Having substituted (4.1) into the transformed equations and equated the coefficients for the same
powers of T, we obtain a first-approximation equation

vi+V2p, =0, .2)
a second-approximation equation
v , ’
2M2+7§’V2——V1 =0 (4'3)
1 Al gk .
=M — ] (44)

and a third-approximation equation
us +3/V28vs—v' =0

b e e )

The solution of Egs. (4.2) and (4.4)

w| V2 (3-2k) /2|
H,::S [kzk_3——016 ]

Vlz—v 26“.1
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characterizes the damping of the rate of change in the wave front. The solution of Eqs. (4.3) and (4.5)

A Q-k) /o [ vy \3
= —— L
be = i V30p ( 5 )
vo =)/ 26 (v; —2 o)
characterizes the damping of the curvature of the wave front.

Here

— a 2 b C2 (k-2)) @
4 ‘”[zc‘—2+2mt+k-—2+mt+k—2]t s

t=98° o=(3-2k)/4%
2= {4 o) (13 & + 2 0¥ 2-%
b=40c [2+ B8k —11) 0 + 6 0]

e=VZINU-8(1 —k o+ 16 0?]

and ¢y and ¢; are constants of integration.
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